
SPRITEKIT, SCENEKIT,
ARKIT—OH MY!

Justin Miller

PERSONAL INTRO

➤ Independent developer & photographer

➤ http://justinmiller.io

➤ Most recently led mobile dev & outreach at Mapbox

➤ http://mapbox.com

➤ Background in iOS (10 years) & macOS (15 years) dev,
backend devops (LAMP stack) before that

➤ Serve on the board of App Camp For Girls

➤ http://appcamp4girls.com

➤ Tweet about VW van stuff at @incanus77

http://appcamp4girls.com

AUGMENTED REALITY!

➤ I’m going to guess that you have heard some buzz about this

➤ I’m not going to talk about the heavy lifting that Apple does

➤ I am going to talk about the intersection of three kits:

➤ SpriteKit: 2D content (sprites)

➤ SceneKit: 3D content (solids)

➤ ARKit: rendering graphics content into the real world

➤ Swift’s elegant syntax makes the code pretty clear

➤ So I’ve got a good number of jump-right-in code examples

SCOPE OF THIS TALK
➤ This is a broad overview

➤ There are many, many more facets to each of these kits than
we can get into today

➤ You’ll leave here knowing the working parts and where to go for
more

➤ This is a talk about the higher-level how

➤ You’ll see examples in each of the rendering kits separately, then
put into AR

➤ Content is the key to AR

➤ I am an interested dabbler, not (yet) building production AR apps

Video A

Video B

QUICK INTERLUDE ABOUT AR
➤ AR has been explored and researched for over 20 years

➤ I highly encourage you to check out the work of Mark Billinghurst of
the University of South Australia

➤ Academic papers, Twitter, Medium, books(?!)

➤ The irony here is that the iOS device exists between us and the real
world for AR currently

➤ Revolution of smartphones was removing abstraction

➤ But there are still, I think, many compelling use cases

➤ Archaeology & history of place

➤ Surgical & medical

➤ Mechanical dissection

COMMON CONCEPTS FOR BOTH SPRITEKIT & SCENEKIT
➤ First of all, let’s get our confusing prefixes out of the way

➤ SK: SpriteKit

➤ SCN: SceneKit

➤ Both support external assets (images, textures, models)

➤ Both support physics modeling (gravity, collisions, inertia, particles)

➤ Both build up scenes (sigh…)

➤ Both rely on a node graph

➤ Spatial relationships between objects

➤ All nodes descend from the root node

➤ Position specified in 2D or 3D vectors

SPRITEKIT

SPRITEKIT: 2D SCENES
➤ Base view class: SKView

➤ Can be layered with other UIView derivatives

➤ Or can be built up in complexity

➤ Example: SKView-based buttons that have physics
properties when tapped

➤ Can be interrelated with physics or even joints

➤ Think about old-school Mario jumping & squashing

➤ Good use case for joints is a body with literal joints

➤ Supports positional audio (see SKAudioNode)

➤ Example: character moving in from right

SPRITEKIT BY EXAMPLE

SPRITEKIT BY EXAMPLE: THE BUILD

1. Create the view (SKView)

2. Load an initial, empty scene (SKScene)

3. Add sprites using the node graph (SKSpriteNode)

4. Add some physics behavior (SKPhysicsBody)

5. Add interactivity to kick off physics (UIGestureRecognizer)

Video C

Video D

Video E

SCENEKIT

SCENEKIT: 3D SCENES

➤ Base view class: SCNView

➤ Can also be layered with other UIView derivatives

➤ Can be interrelated with physics

➤ Example: ping pong ball projectile striking a target

➤ Also supports positional audio (see SCNAudioSource)

➤ Example: hearing a monster behind you

SCENEKIT BY EXAMPLE

SCENEKIT BY EXAMPLE: THE BUILD

1. Create the view (SCNView)

2. Load an initial, empty scene (SCNScene)

3. Add geometries using the node graph (SCNNode,
SCNGeometry & subclasses)

4. Add some animation (CABasicAnimation)

5. Add interactivity to stop & start animation
(UIGestureRecognizer)

SCENEKIT GEOMETRIES

➤ All of your favorite shapes are there

➤ (SCN)Plane, Box, Sphere, Pyramid, Cone, Cylinder,
Capsule, Tube, Torus

➤ You can extrude your own 2D shapes

➤ SCNShape, SCNText

➤ You can also bring in external models!

➤ Load a model into an SCNScene, then fetch its root node

SceneKit built-in shapes

External 3D models (in many formats)

Video F

Video G

ARKIT

ARKIT IS NOT A LARGE FRAMEWORK

➤ There aren’t a ton of classes (currently about a dozen)

➤ Session, configuration, anchors, rendering views, hit
testing, and camera details (frames, lighting estimates)

➤ Magic ✨: rendering coordinate systems are now in meters!

➤ More magic ✨✨: the combination of ARKit’s camera
processing and your content

➤ Which is a lot like most apps

➤ How you build is not as difficult as what you build

ARKIT BY EXAMPLE

ARKIT BY EXAMPLE: THE BUILD

1. Create the view (ARSKView or ARSCNView)

2. Load an initial, empty scene (SKScene or SCNScene)

3. Add objects using the node graph (sprites or geometries)

4. Add animations (SKAction or CABasicAnimation)

5. Add interactivity (UIGestureRecognizer)

UH, HOW DO WE PLACE
ITEMS IN THE RIGHT PLACES?

🤔

https://www.flickr.com/photos/para_llm/33389226121

ANCHORS!
➤ ARAnchor is the key to proper AR content placement

➤ Auto-detected (horizontal planes as ARPlaneAnchor or faces as
ARFaceAnchor, vertical planes & image recognition in beta)

➤ Manually added

➤ By acting on hit testing query results

➤ By externally determining placement (DIY computer vision?)

➤ For Apple-provided, position & transform get updated & refined

➤ Use delegation pattern to provide content & respond to anchor
add, update, and remove

➤ Think of this like table cell delegation

Video H

Video I

Video J

Video K

Video L

LET’S RECAP
➤ Choose SpriteKit for 2D content and SceneKit for 3D content

➤ Content can be cross-loaded between kits!

➤ SpriteKit scenes can be applied as SceneKit textures

➤ SceneKit geometries can be rendered into 2D SpriteKit content

➤ Learn and understand the node graph

➤ Understand AR anchors

➤ And watch this space! Apple’s really going to innovate here

➤ How you put things in AR isn’t nearly as difficult as what you put
there.

➤ Go make some great apps!

THANK YOU!
#

CONTACT & RESOURCES
➤ http://github.com/incanus

➤ Source code for this talk is online

➤ Apple’s Building Your First AR Experience sample app

➤ Great for visually understanding plane detection & anchor
refinement over time

➤ Apple’s Recognizing Images in an AR Experience (beta SDK)

➤ Pre-bundle images in your app that AR can recognize & act on

➤ Twitter: @incanus77

➤ http://justinmiller.io

➤ I blog about tech & non-tech stuff

http://github.com/incanus
http://justinmiller.io

