
Mapbox GL
Modern, Robust, Open Source

Maps on Mobile & Web
Justin Miller • @incanus77

I did a talk like this at OSB ’15, but today we’ve realized the promise of a lot of this.

Plus, I’d like to talk a little about the project and its foundations.

How many folks are familiar with either Mapbox or Mapbox GL?

Introduction

• I do mobile engineering & outreach at
Mapbox

• My background is in sysadmin/devops,
UNIX, PHP, Mac/iOS, Android, C++

• I want to talk today about project/
product divide, a technical overview, &
sustaining open source

Mapbox
• Building open source tools for

custom map design &
development

• Cloud hosting of data backend
(increasingly realtime)

• About 250 folks worldwide

• Yes, we are for-profit, but also
open source

Realtime backend: OSM QA, telemetry & Pulse, satellite

Maps for Maps' Sake
• Google Maps for Android, iOS, and web

• Maps as a byproduct of advertising data

• Apple Maps for iOS and macOS

• Maps as a byproduct of hardware sales

• Mapbox for Android, iOS, web, macOS, QT, C++, Unity…

• Maps for maps’ sake as a flexible toolkit/platform

Mapbox GL

• Renderer technology/project name

• mapbox-gl-native (C++/Objective-C/Java)

• mapbox-gl-js (uhhh... JS)

• Forms basis of mobile native & JavaScript
SDKs

Tech Core
• OpenGL (OpenGL ES on mobile, WebGL in

HTML)

• Hardware-accelerated, built on
standards, fast

• Tries not to compromise

• Built at the lowest possible levels

• It’s a platform which provides & relies on
more standards

Compromises: hybrid/cross-platform frameworks, need to build the root anyway

Styling: primitives, icons/sprites, metadata, data sources, layering

Mapbox GL Native

Mapbox GL JS

Enough talk, let’s see
a couple demos!

👀

Maps are about layers. We like to think of maps as layers for editing, not stuff you put your stuff on top of.

Layers Have Stuff

• There are types of layers (i.e. primitives)

• Layers have properties

• Properties have different types of
values

• Layers are ordered

line Layer
• line-color

• line-width

• line-dasharray

• line-opacity

• line-cap

• line-translate

• …

apologize/survey for color-blindness

Style Spec

• Defines all of this for many layer types (line, fill,
symbol, raster, fill-extrusion…)

• This is an open spec (now part of GL JS repo)

• Has bindings for various languages

• JavaScript, C++

• Spec available as Markdown

Mapbox GL Style Spec

What About Data?
• Vector tile format (also open as vector-tile-spec)

• Maps are tiled (think: checkerboards for each scale)

• Concept of "data layers”

• Points of interest (names & types as symbols)

• Roads (names as symbols & geometries as lines)

• Parks (geometries as fills)

Vector Tile Spec

Parks

Data Layers " Style Layers

Roads

POIs A B

Foo Street

"

"

"

The cool thing here is the data layer order doesn’t matter.

In fact, you can interleave different data sources in the way you order the style layers.

Parks

Data Layers " Style Layers

Roads

POIs

Foo Street

A
B

"

"

"

The cool thing here is the data layer order doesn’t matter.

In fact, you can interleave different data sources in the way you order the style layers.

Vector Tiles Are Just Grids
• Not mathematical vectors (e.g. beziers)

• Rather they are a 4096 resolution grid

• Vector geometries are encoded as delta drawing steps

• move to 5,4

• draw up 3

• draw left 4

• draw down 2

Vector Tiles Are Just Grids
• Not mathematical vectors (e.g. beziers)

• Rather they are a 4096 resolution grid

• Vector geometries are encoded as delta drawing steps

• move to 5,4

• draw up 3

• draw left 4

• draw down 2

Vector Tiles Are Just Grids
• Not mathematical vectors (e.g. beziers)

• Rather they are a 4096 resolution grid

• Vector geometries are encoded as delta drawing steps

• move to 5,4

• draw up 3

• draw left 4

• draw down 2

Vector Tiles Are Just Grids
• Not mathematical vectors (e.g. beziers)

• Rather they are a 4096 resolution grid

• Vector geometries are encoded as delta drawing steps

• move to 5,4

• draw up 3

• draw left 4

• draw down 2

12

12

4096

4096

4096

4096

True Rasters are Still
Supported!

• Satellite imagery is the big use case

• Rasters are able to be sandwiched with vector layers

• Example: “Satellite Streets”

Foo Street

A
B

Runtime Styling!

• All of these properties can be changed at runtime!

• Example: change parks from green to brown

• In JavaScript, the style is literally JSON, so just mutate it

• In native, there are strongly-typed APIs

map.style.layer(withIdentifier: “parks”).fillColor =

MGLStyleValue(rawValue: .brown)

Movement & Animation!
• Transitions

• For every e.g. fill-color, there is a fill-color-
transition

• Has a delay and/or a duration

• Example: “transition to red 1.0s from now over 2.0s”

• Animated camera/viewport

• Pretend like you are in a helicopter!

One Further: Data-Driven or
Property Styling

• Example: height of individual building tied to {height}
field (exponential/linear)

• Example: icon of POI tied to POI’s {type} field (identity)

• Example: color of county tied to one of four values based
on {unemployment} field range (categorical)

Challenges of Open Source

• Edge case features

• Discussion, influence,
rejection

• Plugins

• Customer strategy

• One-way GitHub linking
from private repos

• We don't throw code over
the wall

• Mistakes are public

• Walkbacks are public

• Indecision is public

• But it's real—software
isn't perfect

Public Repositories
•https://github.com/mapbox/…

• mapbox-gl-native

• mapbox-gl-js

• mapbox-gl-style-spec (in GL JS)

•vector-tile-spec

• And hundreds more! (over 650 currently)

Recap

• Maps as a platform

• Low-level tech core

• Layers, both style and
data

• Open specs

• Runtime styling

• Movement & animation

• Data-driven styling

• Open source real talk

Thank You!

• @incanus77

• justin@mapbox.com

• @mapbox

• mapbox.com/blog

mailto:justin@mapbox.com
http://mapbox.com/blog

