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I did a talk like this at OSB ’15, but today we’ve realized the promise of a lot of this. 


Plus, I’d like to talk a little about the project and its foundations. 


How many folks are familiar with either Mapbox or Mapbox GL? 



Introduction

• I do mobile engineering & outreach at 
Mapbox


• My background is in sysadmin/devops, 
UNIX, PHP, Mac/iOS, Android, C++


• I want to talk today about project/
product divide, a technical overview, & 
sustaining open source



Mapbox
• Building open source tools for 

custom map design & 
development


• Cloud hosting of data backend 
(increasingly realtime)


• About 250 folks worldwide


• Yes, we are for-profit, but also 
open source

Realtime backend: OSM QA, telemetry & Pulse, satellite



Maps for Maps' Sake
• Google Maps for Android, iOS, and web


• Maps as a byproduct of advertising data


• Apple Maps for iOS and macOS


• Maps as a byproduct of hardware sales


• Mapbox for Android, iOS, web, macOS, QT, C++, Unity…


• Maps for maps’ sake as a flexible toolkit/platform



Mapbox GL

• Renderer technology/project name


• mapbox-gl-native (C++/Objective-C/Java) 


• mapbox-gl-js (uhhh... JS)


• Forms basis of mobile native & JavaScript 
SDKs



Tech Core
• OpenGL (OpenGL ES on mobile, WebGL in 

HTML)


• Hardware-accelerated, built on 
standards, fast


• Tries not to compromise


• Built at the lowest possible levels


• It’s a platform which provides & relies on 
more standards

Compromises: hybrid/cross-platform frameworks, need to build the root anyway


Styling: primitives, icons/sprites, metadata, data sources, layering



Mapbox GL Native



Mapbox GL JS



Enough talk, let’s see 
a couple demos!

👀



















Maps are about layers. We like to think of maps as layers for editing, not stuff you put your stuff on top of. 



Layers Have Stuff

• There are types of layers (i.e. primitives)


• Layers have properties


• Properties have different types of 
values


• Layers are ordered



line Layer
• line-color 

• line-width 

• line-dasharray 

• line-opacity 

• line-cap 

• line-translate 

• …

apologize/survey for color-blindness



Style Spec

• Defines all of this for many layer types (line, fill, 
symbol, raster, fill-extrusion…)


• This is an open spec (now part of GL JS repo)


• Has bindings for various languages


• JavaScript, C++


• Spec available as Markdown



Mapbox GL Style Spec



What About Data? 
• Vector tile format (also open as vector-tile-spec)


• Maps are tiled (think: checkerboards for each scale)


• Concept of "data layers”


• Points of interest (names & types as symbols)


• Roads (names as symbols & geometries as lines)


• Parks (geometries as fills)



Vector Tile Spec
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The cool thing here is the data layer order doesn’t matter. 


In fact, you can interleave different data sources in the way you order the style layers. 
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Vector Tiles Are Just Grids
• Not mathematical vectors (e.g. beziers)


• Rather they are a 4096 resolution grid


• Vector geometries are encoded as delta drawing steps


• move to 5,4


• draw up 3


• draw left 4


• draw down 2
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True Rasters are Still 
Supported! 

• Satellite imagery is the big use case


• Rasters are able to be sandwiched with vector layers


• Example: “Satellite Streets”

Foo Street

A
B







Runtime Styling! 

• All of these properties can be changed at runtime! 


• Example: change parks from green to brown


• In JavaScript, the style is literally JSON, so just mutate it


• In native, there are strongly-typed APIs


map.style.layer(withIdentifier: “parks”).fillColor =  

MGLStyleValue(rawValue: .brown)













Movement & Animation!
• Transitions


• For every e.g. fill-color, there is a fill-color-
transition


• Has a delay and/or a duration


• Example: “transition to red 1.0s from now over 2.0s”


• Animated camera/viewport


• Pretend like you are in a helicopter!









One Further: Data-Driven or 
Property Styling

• Example: height of individual building tied to {height} 
field (exponential/linear)


• Example: icon of POI tied to POI’s {type} field (identity)


• Example: color of county tied to one of four values based 
on {unemployment} field range (categorical)











Challenges of Open Source

• Edge case features


• Discussion, influence, 
rejection


• Plugins


• Customer strategy


• One-way GitHub linking 
from private repos


• We don't throw code over 
the wall


• Mistakes are public


• Walkbacks are public


• Indecision is public


• But it's real—software 
isn't perfect



Public Repositories
•https://github.com/mapbox/… 

• mapbox-gl-native 

• mapbox-gl-js 

• mapbox-gl-style-spec (in GL JS)


•vector-tile-spec 

• And hundreds more! (over 650 currently)



Recap

• Maps as a platform


• Low-level tech core


• Layers, both style and 
data


• Open specs


• Runtime styling


• Movement & animation 


• Data-driven styling


• Open source real talk



Thank You! 

• @incanus77


• justin@mapbox.com


• @mapbox


• mapbox.com/blog

mailto:justin@mapbox.com
http://mapbox.com/blog

