
Dissecting the “Kit” 
in MapKit

Justin Miller • Development Seed / MapBox • @incanus77

CocoaConf PDX • October 26, 2012 • Portland, OR



Introduction

• I’ve been programming about 15 years

• I’ve been using Cocoa about 8 years

• Work for Development Seed on MapBox

• User & developer tools for custom maps

• I work mostly on iOS developer tools



Overview

• I’m not here to teach you MapKit

• Goal is to provide general overview

• Then: replacement using Cocoa concepts

• Come back to this later if you need to

• I’ll post slides & sample code later



MapKit

• Released with iOS 3 in 2009

• Originally partnered with Google

• Most of current functionality at debut

• iOS 4 added shape overlays

• iOS 5 added user tracking & rotation

• iOS 6 updated cosmetics & data source



MapBox SDK

• Originally based on 2008 Route-Me project

• Predated original MapKit

• Refactored in Alpstein fork in 2011

• Forked into our SDK in early 2012

• I started hacking on Route-Me in 2010

• Entirely open source (BSD license)



Project Stats

• About 15,000 lines of code

• Our fork has about 140 GitHub tickets

• About 35 forks of our project

• About 200 “stars”

• Currently at about 50 classes

• Many of these are “private”





MapKit Parts

• Show Apple’s, then ours in detail

• Three main components: 

1. Map view: main UI element & container

2. Annotations: point & shape overlays

3. User location services: “blue dot”



1. Map View





2. Annotations





3. User Location Services





Break It Down



1. Map View



The Map View

• What is it? 

• Panning, zooming, tiled view

• How does it work? 

• UIScrollView as main component

• CATiledLayer-backed content view(s)

• Geographic controls affecting the content

• Some extra gestures 





Map Zoom Levels

• Zoom 0

• One tile covers the whole world

• Content view is 256px on a side

• Zoom Z

• 4Z tiles cover the whole world

• Content view is 2Z * 256px on a side



CATiledLayer Use

• Every UIView has a CALayer

• Override +[UIView layerClass]

• Return [CATiledLayer class]

• -drawLayer:inContext: method

• Delegate is the owning view



CATiledLayer Drawing

• Context is your “drawing scratch space”

• Query the context for offset & bounds

• Combine this with the zoom scale

• Fetch & draw a tile to the context



Tiling Demo



Coordinates & Offsets

• Latitude/longitude e.g. (0, 0)

• Center of square map

• Fractionally the same at each zoom level

• e.g. 50% over, 50% down

• Convert between lat/long & these fractions



Offsets Demo



Map Gestures

• Pan & zoom handled by UIScrollView

• Extra gestures handled individually

• Single- and double-tap

• Two-finger single-tap

• Additional pan for marker dragging

• With hit testing before failing



2. Annotations



Annotations

• Simple array of annotation data objects

• Think table cells (drawn on demand)

• Assign layer upfront or query map delegate

• Add layer to screen when visible

• Remove layer & nil out when off screen



Visibility & Tracking

• We use Key Value Observing (KVO)

• -[UIScrollView contentOffset]

• More accurate results than delegate

• Not before or after, but during



Annotation Layers

• Placed on an overlay view above tiled view

• Simple points made with RMMarker

• Image via -[CALayer contents]

• Vector shapes made with RMShape

• Each has a CAShapeLayer



Annotation Panning

• Overlay layer gets moved with the map

• Again, via KVO on the content offset

• Extra pan gesture for marker dragging



Annotation Zooming

• Overlay layer “stretches” with the map

• Layers still “stick” to the right points

• Positions moved during KVO updates

• Markers don’t change size

• Shapes scale themselves during zooms

• Affine transform, then path animation



Annotation Demo



3. User Location Services



User Location Services

• Tracking “blue dot”

• Three layers: dot, accuracy circle, halo

• Halo gets layer animation for “pulse”

• Placement: Core Location coordinate

• Map orientation & rotation

• Angle: Core Location heading



BTW:
github.com/0xced/UIKit-Artwork-Extractor



Heading Tracking

• Use heading angle to rotate map view

• Apply opposite rotation to markers

• Allows them to stay upright

• All changes are animated smoothly



Rotation Demo



Tracking Mode Button

• UIBarButtonItem subclass

•MKUserTrackingBarButtonItem

•RMUserTrackingBarButtonItem

• Associated with a map view

• KVO for two-way communication

• Animates all state changes



Tracking Demo



3D Mode

• You’ve seen this in iOS 6 MapKit

• Possible at basic level via simple transforms

• Not going to get into buildings, etc. 



Rotation

•UIRotationGestureRecognizer

• Similar effect to compass heading rotation

• Apply rotation about Z axis



Tilting

•UIPanGestureRecognizer

• Two finger touches

• Roughly parallel movement

• Apply rotation about X axis



Scroll View Transforms

• Transform around Z from rotation

• Transform around X from tilt

• Combine transforms together

• CATransform3DConcat() 



3D Demo



Other Tidbits

• Callouts: github.com/nfarina/calloutview

• Compositing: multiple layered tiles

• Tile cache: memory & disk caching

• Documentation: appledoc

• Distribution: CocoaPods

• Region interactivity: UTFGrid



Thank You! 

• Twitter/ADN: @incanus77

• Email: justin@mapbox.com

• Coding: github.com/incanus

• SDK: mapbox.com/mobile

mailto:justin@mapbox.com
mailto:justin@mapbox.com

